Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38395106

RESUMO

Cutaneous neurofibromas (CNFs) are benign tumors that occur in the dermis of individuals with the inherited tumor predisposition disorder, neurofibromatosis type 1. CNFs cause disfigurement, pain, burning, and itching, resulting in substantially reduced QOL in patients with neurofibromatosis type 1. CNFs are benign tumors that exhibit cellular and molecular heterogeneity, making it difficult to develop tractable in vitro or in vivo models. As a result, CNF research and drug discovery efforts have been limited. To address this need, we developed a reproducible patient-derived explant (PDE) ex vivo culture model using CNF tumors from patients with neurofibromatosis type 1. CNF PDEs remain viable in culture for over 9 days and recapitulate the cellular composition and molecular signaling of CNFs. Using CNF PDEs as a model system, we found that proliferation was associated with increased T-cell infiltration. Furthermore, we identified a pattern of reciprocal inflammatory signaling in CNF PDEs in which tumors rely on prostaglandin or leukotriene-mediated signaling pathways. As proof of principle, we show that ex vivo glucocorticoid treatment reduced the expression of proinflammatory genes, confirming that CNF PDEs are a useful model for both mechanistic studies and preclinical drug testing.

2.
Mol Metab ; 80: 101876, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216123

RESUMO

OBJECTIVE: NF1 is a tumor suppressor gene and its protein product, neurofibromin, is a negative regulator of the RAS pathway. NF1 is one of the top driver mutations in sporadic breast cancer such that 27 % of breast cancers exhibit damaging NF1 alterations. NF1 loss-of-function is a frequent event in the genomic evolution of estrogen receptor (ER)+ breast cancer metastasis and endocrine resistance. Individuals with Neurofibromatosis type 1 (NF) - a disorder caused by germline NF1 mutations - have an increased risk of dying from breast cancer [1-4]. NF-related breast cancers are associated with decreased overall survival compared to sporadic breast cancer. Despite numerous studies interrogating the role of RAS mutations in tumor metabolism, no study has comprehensively profiled the NF1-deficient breast cancer metabolome to define patterns of energetic and metabolic reprogramming. The goals of this investigation were (1) to define the role of NF1 deficiency in estrogen receptor-positive (ER+) breast cancer metabolic reprogramming and (2) to identify potential targeted pathway and metabolic inhibitor combination therapies for NF1-deficient ER + breast cancer. METHODS: We employed two ER+ NF1-deficient breast cancer models: (1) an NF1-deficient MCF7 breast cancer cell line to model sporadic breast cancer, and (2) three distinct, Nf1-deficient rat models to model NF-related breast cancer [1]. IncuCyte proliferation analysis was used to measure the effect of NF1 deficiency on cell proliferation and drug response. Protein quantity was assessed by Western Blot analysis. We then used RNAseq to investigate the transcriptional effect of NF1 deficiency on global and metabolism-related transcription. We measured cellular energetics using Agilent Seahorse XF-96 Glyco Stress Test and Mito Stress Test assays. We performed stable isotope labeling and measured [U-13C]-glucose and [U-13C]-glutamine metabolite incorporation and measured total metabolite pools using mass spectrometry. Lastly, we used a Bliss synergy model to investigate NF1-driven changes in targeted and metabolic inhibitor synergy. RESULTS: Our results revealed that NF1 deficiency enhanced cell proliferation, altered neurofibromin expression, and increased RAS and PI3K/AKT pathway signaling while constraining oxidative ATP production and restricting energetic flexibility. Neurofibromin deficiency also increased glutamine influx into TCA intermediates and dramatically increased lipid pools, especially triglycerides (TG). Lastly, NF1 deficiency alters the synergy between metabolic inhibitors and traditional targeted inhibitors. This includes increased synergy with inhibitors targeting glycolysis, glutamine metabolism, mitochondrial fatty acid transport, and TG synthesis. CONCLUSIONS: NF1 deficiency drives metabolic reprogramming in ER+ breast cancer. This reprogramming is characterized by oxidative ATP constraints, glutamine TCA influx, and lipid pool expansion, and these metabolic changes introduce novel metabolic-to-targeted inhibitor synergies.


Assuntos
Neurofibromatose 1 , Neurofibromina 1 , Animais , Ratos , Trifosfato de Adenosina/metabolismo , Glutamina/metabolismo , Lipídeos , 60645 , Neurofibromatose 1/genética , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo
3.
Epigenetics Chromatin ; 14(1): 7, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33436083

RESUMO

Benign peripheral nerve sheath tumors are the clinical hallmark of Neurofibromatosis Type 1. They account for substantial morbidity and mortality in NF1. Cutaneous (CNF) and plexiform neurofibromas (PNF) share nearly identical histology, but maintain different growth rates and risk of malignant conversion. The reasons for this disparate clinical behavior are not well explained by recent genome or transcriptome profiling studies. We hypothesized that CNFs and PNFs are epigenetically distinct tumor types that exhibit differential signaling due to genome-wide and site-specific methylation events. We interrogated the methylation profiles of 45 CNFs and 17 PNFs from NF1 subjects with the Illumina EPIC 850K methylation array. Based on these profiles, we confirm that CNFs and PNFs are epigenetically distinct tumors with broad differences in higher-order chromatin states and specific methylation events altering genes involved in key biological and cellular processes, such as inflammation, RAS/MAPK signaling, actin cytoskeleton rearrangement, and oxytocin signaling. Based on our identification of two separate DMRs associated with alternative leading exons in MAP2K3, we demonstrate differential RAS/MKK3/p38 signaling between CNFs and PNFs. Epigenetic reinforcement of RAS/MKK/p38 was a defining characteristic of CNFs leading to pro-inflammatory signaling and chromatin conformational changes, whereas PNFs signaled predominantly through RAS/MEK. Tumor size also correlated with specific CpG methylation events. Taken together, these findings confirm that NF1 deficiency influences the epigenetic regulation of RAS signaling fates, accounting for observed differences in CNF and PNF clinical behavior. The extension of these findings is that CNFs may respond differently than PNFs to RAS-targeted therapeutics raising the possibility of targeting p38-mediated inflammation for CNF treatment.


Assuntos
Neurofibroma Plexiforme , Neurofibromatose 1 , Epigênese Genética , Epigenômica , Humanos , Neurofibroma Plexiforme/genética , Neurofibromatose 1/genética , Transdução de Sinais
4.
Bio Protoc ; 10(22): e3818, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659470

RESUMO

With the advent of CRISPR-Cas and the ability to easily modify the genome of diverse organisms, rat models are being increasingly developed to interrogate the genetic events underlying mammary development and tumorigenesis. Protocols for the isolation and characterization of mammary epithelial cell subpopulations have been thoroughly developed for mouse and human tissues, yet there is an increasing need for rat-specific protocols. To date, there are no standard protocols for isolating rat mammary epithelial subpopulations. Analyzing changes in the rat mammary hierarchy will help us elucidate the molecular events in breast cancer, the cells of origin for breast cancer subtypes, and the impact of the tumor microenvironment. Here we describe several methods developed for 1) rat mammary epithelial cell isolation; 2) rat mammary fibroblast isolation; 3) culturing rat mammary epithelial cells; and characterization of rat mammary cells by 4) flow cytometric analysis; and 5) immunofluorescence. Cells derived from this protocol can be used for many purposes, including RNAseq, drug studies, functional assays, gene/protein expression analyses, and image analysis.

5.
NPJ Breast Cancer ; 4: 29, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30182054

RESUMO

The key negative regulatory gene of the RAS pathway, NF1, is mutated or deleted in numerous cancer types and is associated with increased cancer risk and drug resistance. Even though women with neurofibromatosis (germline NF1 mutations) have a substantially increased breast cancer risk at a young age and NF1 is commonly mutated in sporadic breast cancers, we have a limited understanding of the role of NF1 in breast cancer. We utilized CRISPR-Cas9 gene editing to create Nf1 rat models to evaluate the effect of Nf1 deficiency on tumorigenesis. The resulting Nf1 indels induced highly penetrant, aggressive mammary adenocarcinomas that express estrogen receptor (ER) and progesterone receptor (PR). We identified distinct Nf1 mRNA and protein isoforms that were altered during tumorigenesis. To evaluate NF1 in human breast cancer, we analyzed genomic changes in a data set of 2000 clinically annotated breast cancers. We found NF1 shallow deletions in 25% of sporadic breast cancers, which correlated with poor clinical outcome. To identify biological networks impacted by NF1 deficiency, we constructed gene co-expression networks using weighted gene correlation network analysis (WGCNA) and identified a network connected to ESR1 (estrogen receptor). Moreover, NF1-deficient cancers correlated with established RAS activation signatures. Estrogen-dependence was verified by estrogen-ablation in Nf1 rats where rapid tumor regression was observed. Additionally, Nf1 deficiency correlated with increased estrogen receptor phosphorylation in mammary adenocarcinomas. These results demonstrate a significant role for NF1 in both NF1-related breast cancer and sporadic breast cancer, and highlight a potential functional link between neurofibromin and the estrogen receptor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...